

ENCAPSULATION BY MEMBRANE EMULSIFICATION

Dr Marijana M. Dragosavac m.dragosavac@lboro.ac.uk

Department of Chemical Engineering, Loughborough University, Leicestershire, U.K.

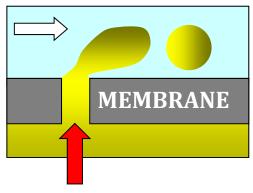
PRESENTATION LAYOUT

- How can we produce drops and turn them into particles?
- Conventional ways to produce drops
- Drop by Drop devices to produce drops
 Microchannel & Membrane emulsification
- Specific encapsulations from drops to particles

IF WE COULD CREATE A DROP THEN WITH THE ADITIONAL TREATMENT WE COULD GET THE SPHERICAL PARTICLE

HOW TO MAKE A DROP?

MAKING EMULSIONS - DROP-BY-DROP


Microchannel emulsification

Injection of dispersed phase through microgrooves.

Kawakatsu et. al. 1997

Membrane emulsification

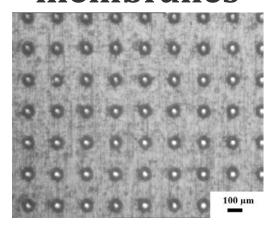
Injection of dispersed phase through membrane.

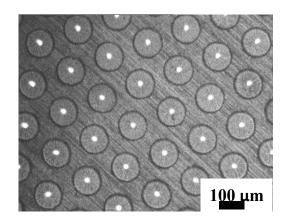
Patent - Asher and Tsien 1980

Nakashima et. al. 1991

They use **low energy** per unit volume and give **monosized** distribution.

MEMBRANE EMULSIFICATION



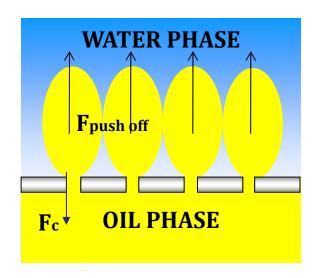


METAL MEMBRANES

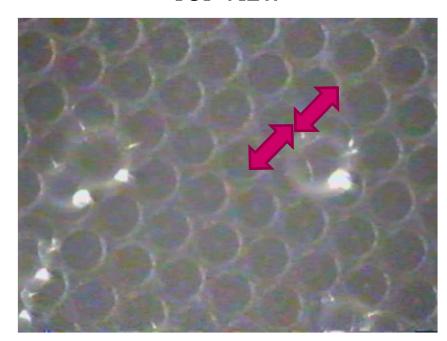
Stainless steel membranes

Nickel membranes

Both used at Loughborough



MEMBRANE EMULSIFICATION


NO SHEAR STRESS ON THE MEMBRANE SURFACE

TOP VIEW

SIDE VIEW

Scaling up – possible Productivity – high

Hydrophilic membrane

 D_{50} =200 μm

Kosvintsev et al. 2008

SHEAR STRESS ON THE MEMBRANE SURFACE

Movements of continuous phase:

- STIRRING
- CROSS FLOW
- PULSATIONS OF THE CONTINUOUS PHASE

Movements of the membrane:

- VIBRATIONS
- ROTATIONS
- TORSIONAL MOVEMENTS

EXPERIMENTAL RESULTS

1. COMPLEX COACERVATION 2. POLYMER PARTICLES FOR DRUG DELIVERY 3. INORGANIC SILICA PARTICLES

1. COMPLEX COACERVATION

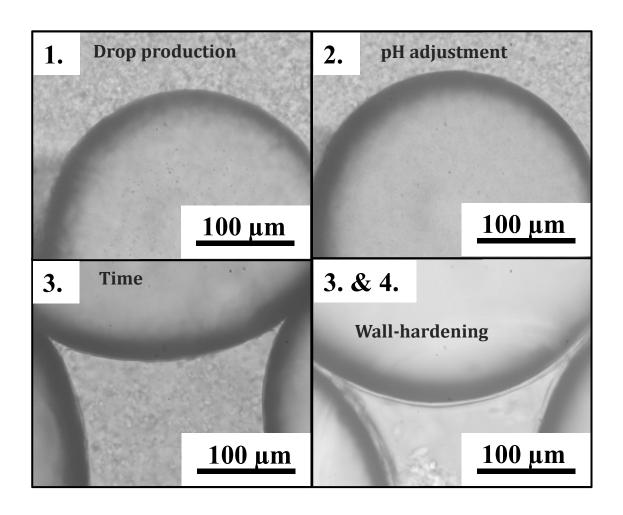
O/W emulsion

Motivation for the work:

Currently batch production

High polydispersity of the product and usually too big droplet size

Need for gelatine alternative


1. COMPEX COACERVATION

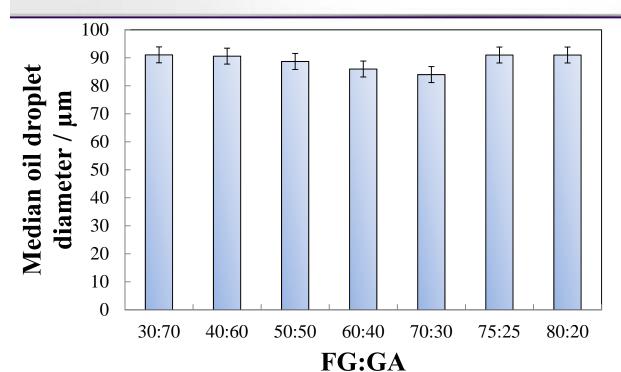
- 1. Drop production in hydrocolloids solution
- 2. Coacervation (phase separation) implying the formation of a coacervate phase pH adjustment
- 3. Wall formation by aggregation of the hydrocolloid around droplets of the emulsified hydrophobic material time, room temperature
- 4. Wall-hardening, which is generally achieved by cross-linking the hydrocolloid forming the wall

1. COMPLEX COACERVATION

1. COMPLEX COACERVATION - Oil encapsulation

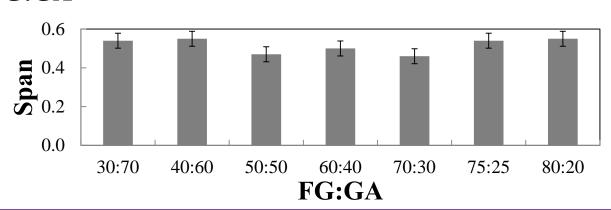
FISH GELATINE CAPSULES WHY FISH GELATINE?

- **ROOM TEMPERATURE** less energy compared to alternative gelatine types and
- New possibilities for encapsulation of VOLATILE COMPOUNDS
- Increased **CONSUMER** consent for religious or diet reasons and health safety


Piaccentini et al., 2013

ITM-CNR @ University of Calabria, Rende

DIFFERENT RATIOS OF FG:GA - PARTICLE SIZE

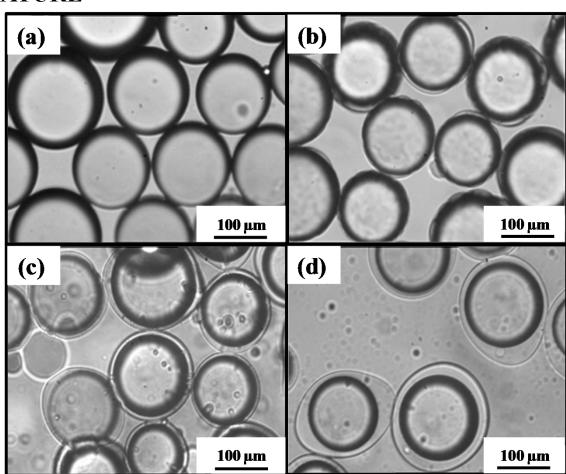

Shear = 6 Pa Injection rate =1.5 ml/min

pH=3.5

Room temperature

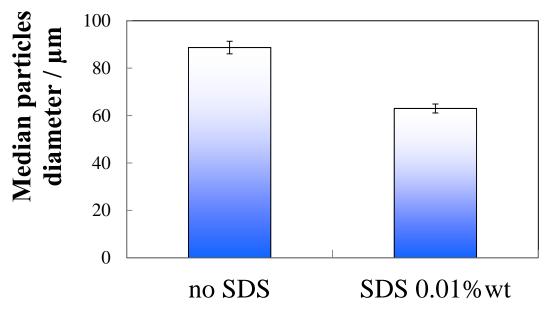
$$Span = \frac{D_{90} - D_{10}}{D_{50}}$$

Piaccentini et al., 2013

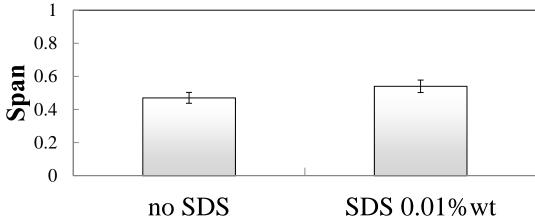


DIFFERENT RATIOS OF FG:GA FOR MICROCAPSULES

ROOM TEMPERATURE


Piaccentini et al., 2013

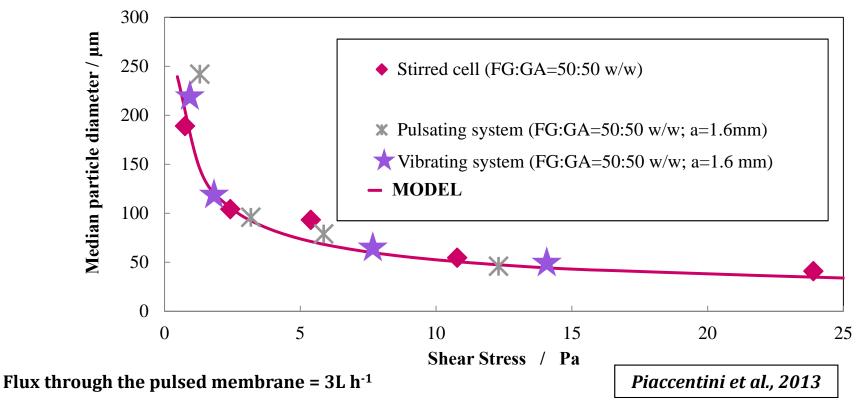
FG:GA (a) 30:70; (b) 40:60; (c) 80:20; and (d) 50:50.



PARTICLE SIZE CONTROL WITH SURFACTANT ADDED

Shear = 6 Pa Injection rate =1.5 ml/min

Piaccentini et al., 2013



1. COMPLEX COACERVATION

DISPERSION CELL, PULSATING & VIBRATING SYSTEM

Dispersed phase: Sunflower oil

Continuous phase: Fish gelatine (FG) and Gum Arabic (GA)

2. ANTYCANCER DRUG ENCAPSULATION

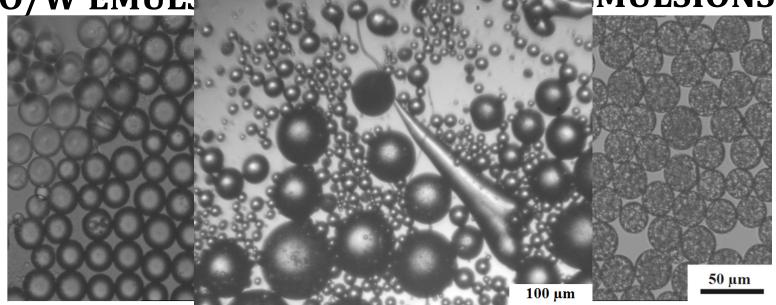
Aim to encapsulate water soluble peptide

2. ANTYCANCER DRUG ENCAPSULATION O/W & W/O/W

Motivation for the work:

Currently batch production
Low uniformity of the produced particles using conventional
emulsification methods
Need for higher encapsulation efficiency

Anticancer drug - extremely expensive & temperature sensitive)



2. ENCAPSULATION OF WATER SOLUBLE PEPTIDE USING

BIODEGRADABLE POLYMER

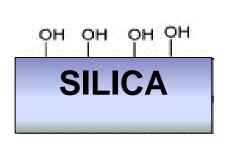
HPLC - ENCAPSULATION EFFICIENCY (EE) OF PEPTIDE

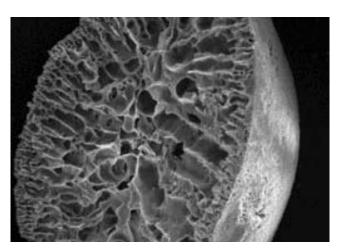
✓Cancer treatment	POLYMER CONCENTRATION (%)	EE (%)
COSOLVENT METHOD (O/W)	10	40
	20	50
W/O/W	10	70
	20	85

Dragosavac 2012, Unpublished material

3. SILICA PARTICLES W/O emulsion

Aim to produce spherical silica particles with high surface area and internal structure

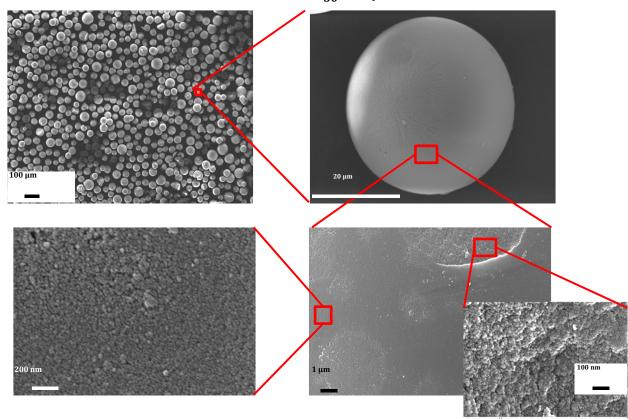



3. SILICA PARTICLES

W/O emulsion

Motivation for the work:

- Be able to produce novel ion exchange materials
- Use of porous silica for delivery of oil soluble drugs



3. SILICA PARTICLES

for drug delivery

SILICA PARTICLES WITH D_{50} =40 μm AFTER DRYING

$$Na_2SiO_3$$
 (aq) $+ H_2SO_4$ (aq) $\rightarrow SiO_2$ (s) $+ Na_2SO_4$ (s) $+ H_2O$ (aq)

CONCLUSIONS

WHY MEMBRANE EMULSIFICATION?

- High productivity using microsieve membrane
- Uniform particles sizes 10 1000 μm
- Suitable for encapsulation of sheer sensitive compounds
- Scaling up possible providing larger membrane area

ACKNOWLEDGEMENTS

Micro / Nano – Materials Engineering Group at Loughborough University,

Dr Goran T. Vladisavljevic

Prof. Richard G. Holdich

Visiting researchers:

Dr Emma Piaccentini, CNR Italy, Dr Alessandra Imbrognio, CNR Italy Dr Miguel Angel Suarez Valdes, UNIDAV, Spain

For the membranes and membrane systems:

http://www.micropore.co.uk/

Micropore Technologies Ltd. UK

Students:

Serena Morelli, Seyitan Odunola, Ryan Barnfield

TSB